Small interfering RNA-mediated knockdown of PRL phosphatases results in altered Akt phosphorylation and reduced clonogenicity of pancreatic cancer cells.

نویسندگان

  • Bret Stephens
  • Haiyong Han
  • Galen Hostetter
  • Michael J Demeure
  • Daniel D Von Hoff
چکیده

The PRL phosphatases have been implicated in cancer cell growth and metastasis in a variety of tumor types. Using cDNA microarray, we previously identified and reported PRL-1 as being highly up-regulated in pancreatic cancer cell lines. In this study, we sought to further evaluate the expression of all three PRL phosphatases in pancreatic cancer cell lines and extend our findings to in situ analysis of primary pancreatic tumors taken directly from patients. Additionally, we determine if small interfering RNA-mediated knockdown of relevant PRLs confers antitumor effects in pancreatic cancer cells. Using oligonucleotide expression arrays, mRNA levels of PRL-1 and PRL-2 but not PRL-3 were identified as up-regulated in pancreatic cancer cell lines and tumor samples taken directly from patients compared with those of normal pancreas. Focusing on PRL-1 and PRL-2, high levels of both proteins were detected in a subset of pancreatic cancer cell lines and tumor samples using Western blotting and immunohistochemistry, respectively. Small interfering RNA-mediated knockdown of PRL-1 and PRL-2 in combination resulted in a moderate reduction of cellular growth and migration in MIA PaCa-2 and PANC-1 cells. More importantly, knockdown of both PRL-1 and PRL-2 significantly inhibited colony formation of these cells in soft agar as well as serum-induced Akt phosphorylation. These data support the hypothesis that PRL phosphatases regulate key pathways involved in tumorigenesis and metastasis and that knockdown of both PRL-1 and PRL-2 is required to disrupt PRL phosphatase function in pancreatic cancer cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silencing of rhomboid domain containing 1 to inhibit the metastasis of human breast cancer cells in vitro

Objective(s): A growing body of evidence indicates that rhomboid domain containing 1 (RHBDD1) plays an important role in a variety of physiological and pathological processes, including tumorigenesis. We aimed to determine the function of RHBDD1 in breast cancer cells. Materials and Methods: In this study, we used the Oncomine™ database to determine the expression patterns of RHBDD1 in normal a...

متن کامل

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

PRL-1 tyrosine phosphatase regulates c-Src levels, adherence, and invasion in human lung cancer cells.

Phosphatases of regenerating liver (PRL) constitute a subfamily of the protein tyrosine phosphatases that are implicated in oncogenic and metastatic phenotypes. In this study, we evaluated the role of PRL-1 in cell proliferation and metastatic processes in human lung cancer cells. We stably transfected human A549 lung cancer cells with several short hairpin RNAs for PRL-1 and found decreased in...

متن کامل

The anti-HER3 (ErbB3) therapeutic antibody 9F7-F11 induces HER3 ubiquitination and degradation in tumors through JNK1/2- dependent ITCH/AIP4 activation

We characterized the mechanism of action of the neuregulin-non-competitive anti-HER3 therapeutic antibody 9F7-F11 that blocks the PI3K/AKT pathway, leading to cell cycle arrest and apoptosis in vitro and regression of pancreatic and breast cancer in vivo. We found that 9F7-F11 induces rapid HER3 down-regulation. Specifically, 9F7-F11-induced HER3 ubiquitination and degradation in pancreatic, br...

متن کامل

ANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO

The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 2008